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Abstract. The partial static structure factors, using the Faber-Ziman (FZ) theory, have been calculated
for Ag-In alloy. For 20% Ag at 623 K and 70% Ag at 973 K, the interionic pair potential based on
the Bretonnet-Silbert (BS) formalism are calculated and the hard sphere diameters for the component
elements are estimated from the potential profile using the linearised Weeks-Chandler-Andersen (LWCA)
method. The average number densities are calculated on the assumption that the atomic volumes are
simply additive. The calculated structure factors are compared with the experimental values. The partial
structure factors for Ag-Ag at 20% Ag and In-In at 70% Ag appear to be slightly out of phase with the
calculated values particularly in large q-region. From the calculations it appears that this discrepancy is
related to the process of derivation of the experimental structure factors from the total one, and the Ag-In
alloy can be described by a mixture of hard spheres.

PACS. 61.25.Mv Liquid metals and alloys – 61.20.-p Structure of liquids

1 Introduction

It has been known for quite a long time that for pure liq-
uid metals, the structure factors resemble closely to those
for hard spheres. Calculations of static and dynamic prop-
erties like entropy, specific heat, viscosity and resistivity
on this hard sphere assumption have been found to be
quite satisfactory [1–4]. Among many different theoretical
approaches, the derivation of the interatomic pair poten-
tial based on the Bretonnet-Silbert (BS) assumptions [5]
attracted attention for its simplicity in concept and effec-
tiveness in accuracy. In the early nineties, BS proposed a
model to describe interionic interactions mainly for liquid
transition metals. This model treats the sp- and d-bands
separately within the well established pseudopotential for-
malism. The sp-band is described in terms of the empty
core model, while the d-band contribution is derived from
the d-band scattering phase shift using inverse scattering
approach. The resulting model pseudopotential thus re-
duces to a simple local form. As mentioned above, the
BS model is not only simple in basic assumptions but it
is found to be equally easy to handle numerically. One of
the important advantages of it is that the local form allows
one to extend this model to other liquid metals for which
the effects of the sd hybridization are significant. In this
way the model has proved successful for liquid transition
metal calculations [6,7]. It may be noted that non-local
pseudopotentials that conserve norm should be preferred
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for accurate calculation of physical properties. But there
are evidences [8] that the local pseudopotentials describe
physical properties, in some cases, more efficiently than
the non-local ones.

Though the BS formalism [4,6,7] remains one of the
best tools in calculating physical properties of single com-
ponent metallic systems, it has not been applied in the
case of two-component or binary systems. It is relevant
to mention here that the properties of mixtures are very
important for practical purposes. In addition, since these
properties vary with composition and thermodynamic
conditions, by their own right, they deserve attention. A
recent work [9] based on X-rays diffraction experiment on
a binary alloy (Ag-In) aroused interest in this particular
mixture. This, therefore, becomes doubly fascinating to
see how one component metallic approach can be extended
and employed to two-component mixtures; the purpose of
the present work is to pursue and develop this extension
effectively. At the same time it would be exciting to ob-
serve how the BS potential works, in particular, for alloys
in explaining physical properties.

The theoretical idea behind this BS formalism and
its explicit forms used in the present attempt is briefly
mentioned in the following section. In calculating different
structure factors, the established formulas are mentioned
along with the relevant references without going through
its derivation. The paper ends with a discussion of the cal-
culated results with a comparison of the experimentally
derived values in Section 3.
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Table 1. Input parameters: Core radii: Rc1, Rc2; Softness parameters: a1, a2; Number densities: n1, n2; hard sphere diameters:
σ1, σ2 for Ag and In, respectively. C1 denotes the concentration of Ag.

T (K) Rc1(au) a1(au−1) Rc2(au) a2(au−1) n1(A−3) n2(A−3) C1 σ1(A) σ2(A)

623.0 1.04 0.20 1.32 0.27 0.0553 0.0362 0.2 2.52 2.83

973.0 1.04 0.20 1.32 0.27 0.0535 0.0349 0.7 2.50 2.9

2 Theory

2.1 Pair potential

As mentioned above the local pseudopotential can be con-
structed by the superposition of sp- and d-band contribu-
tions [5] for a metallic system,

W (r) =
2∑

m=1

Bm exp(−r/ma) if r < RC

= −Z/r if r > RC (1)

where a, RC and Z stand for softness parameter, core
radius and the effective s-electron occupancy number, re-
spectively. The form inside the core is obtained from the
concept of d-band inverse scattering approach. Outside
the core it is the bare Coulomb interaction between an
electron and an ion. The coefficients B1 and B2 for the
components depend on their RC , a and Z values. The
unscreened form factor of equation (1) is:

W (q) = 4πna3

[
B1J1

(1 + a2q2)2 +
2B2J2

(1 + 4a2q2)2

]

− 4πZe2n

q2
cos(qRC) (2)

where, n(= zρ) is the average number density and

Jm = 2− exp
(
−RC
ma

){[
RC
ma

(
1 +m2a2q2

)
+
(
1−m2a2q2

) ] sin(qRC)
maq

+
[
2 +

RC
ma

(
1 +m2a2q2

)]
cos(qRC)

}
· (3)

The effective interionic potential for the two species may
be written as:

Vij(r) =
(
ZiZj
r

)[
1− 2

π

∫
FN (q)

sin(qr)
q

dq
]

i, j = 1, 2

(4)

where, FN (q) is the normalized energy wave number char-
acteristics:

FN (q) =
(
q2W (q)
aπZn

)2 [
1− 1

ε(q)

] [
1

1−G(q)

]
· (5)

Here ε(q) and G(q) denote the dielectric function and local
field correction, respectively. These functions were taken
from Ichimaru and Utsumi [10]. The values of core radii
were taken from Harrison [11]. The interatomic pair po-
tentials V11(r), V12(r) and V22(r) are calculated for aver-
age number density for different concentrations of the two
component species. The input values for two concentra-
tions are shown in Table 1.

2.2 Determination of HSD

The important parameters like the hard sphere diameters
(HSD) of the constituent ions for these systems are found
from the interatomic pair potential profiles using the lin-
earized Weeks-Chandler-Andersen (LWCA) theory [12]. In
accordance with the original WCA theory [13], the free
energy of a system is expressed in terms of a functional
Taylor expansion with a soft repulsive potential ν(r) and
a hard repulsive potential νσ(r) related to the blip func-
tion B(r) given by

B(r) = Yσ(r) {exp [−βν(r)] − exp [−βνσ(r)]} (6)

where β = (kBT )−1, kB being the Boltzmann constant.
The blip function B(r) is a measure of the departure of
the actual potential ν(r) from the HS reference poten-
tial νσ(r), and Yσ(r) is a cavity function given by

Yσ(r) = g0(r) exp(βνσ) (7)

where g0(r) is the pair correlation function of the HS ref-
erence system.

In the LWCA [12], the Fourier transform of B(r) is
expanded in terms of the Bessel functions and then using
the thermodynamic condition that for an effective hard
sphere diameter, B(q) vanishes, one arrives at:

βν(σ) = ln
{
−2βσν′(σ) + S + 2
−βσν′(σ) + S + 2

}
· (8)

The solution of this transcendental equation (8) yields the
hard sphere diameter σ for the alloy components under
study. Values so obtained are listed in Table 1.

2.3 Structure factors

The Ashcroft and Langreth (AL) partial structure fac-
tors S11(q) (Ag-Ag), S12(q) (Ag-In) and S22(q) (In-In)
are calculated in line with their original work [14]. The
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Fig. 1. Interatomic pair potentials for Ag-Ag (V11), Ag-In
(V12) and In-In (V22) for 20% Ag in Ag-In alloy at 623 K.

necessary inputs are the concentrations of the two spheres
in the mixture and the hard sphere diameters. The total
packing fraction η of the mixtures was found as:

η = η1 + η2 =
π

6
(
C1n1σ

3
1 + C2n2σ

3
2

)
(9)

where, C1, C2 and n1, n2 represent the concentrations
and number densities of Ag and In, respectively. The final
formulas for the AL partial structure factors are given
in [14].

The Faber-Ziman (FZ) partial structure factors Aij(q)
are calculated from the AL partial structure factors
Sij(q) [15] and they are given by:

A11(q) = [S11(q)− C2] /C1

A12(q) =
S12(q)√
(C1C2)

+ 1

A22(q) = [S22(q)− C1] /C2. (10)

3 Results and discussions

The interatomic pair potentials V11(r), V12(r) and V22(r)
calculated from equation (4) for the two binary alloys near
their melting points for different compositions are shown
in Figures 1 and 2. The core radii Rc1 and Rc2 were taken
from [11]. The values of the softness parameter a were
found from the following process. The integral equation
theory variational-modified-hypernetted-chain (VMHNC)

Fig. 2. Interatomic pair potentials for Ag-Ag (V11), Ag-In
(V12) and In-In (V22) for 70% Ag in Ag-In alloy at 973 K.

was used to solve the Ornstein-Zernike (OZ) equation with
a closure relation [16]

g(r) = exp[h(r) − C(r) − βv(r) −B(r)]. (11)

The softness parameter a for which the resulting struc-
ture factors matched closely with those of experimental
values [15] of the elemental systems was finally adopted
for further use in the present study of alloy. The number
densities n1 and n2 of Ag and In at the two temperatures
were found from Brandes [17]. These values used to cal-
culate pair potentials are given in Table 1.

From Figures 1 and 2, it is evident that the depth of
the primary potential well of V22(r) (In-In) is much deeper
than that of V11(r) (Ag-Ag). Apparently, this seems to be
largely due to the difference in the Z values (1.0 for Ag
and 3.0 for In) for the two elements. For a better under-
standing probably one has to look into many body effects
in the matrix. The hard sphere diameters σ1 and σ2 found
from the potential profiles by using the linearised LWCA
method [12] are also given in Table 1.

The Ashcroft-Langreth (AL) partial structure fac-
tors Sij(q) were first evaluated with the above hard
sphere diameters and concentrations. These are then
used to get the Faber-Ziman (FZ) partial structure fac-
tors A11(q), A12(q) and A22(q) corresponding to Ag-
Ag, Ag-In and In-In structure factors respectively for
20% and 70% Ag concentrations; these are shown in
Figure 3 and in Figure 4, respectively. The profiles of
A22(q) for 20% Ag and A11(q) for 70% resemble very
closely to that given in the above cited work. The pro-
files of A11(q) for 20% Ag and A22(q) for 70% Ag
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Fig. 3. Faber-Ziman [FZ] structure factors A11(q), A12(q) and
A22(q) for 20% Ag at 623 K. Solid circles, triangles and squares
are the corresponding experimental points from reference [9].

concentrations seem to be slightly out of phase in the high
q-region. The primary peak position for In-In is located at
a shorter q than those of other two components for both
the concentrations. The peak position of A11(q) for 20%
Ag is slightly lower than those of A11(q) in Arai et al. [9],
but in both these concentrations the peak positions of
A11(q), A12(q) and A22(q) appear in order of decreasing q-
values. Mutatis mutandis, the general agreement between
the experimental values and the calculated ones is pretty
good. Any discrepancy observed between the experimen-
tal and calculated values is likely to result from the steps
of the process in extracting the experimental values.

From the work presented here it may be concluded that
the structure of an alloy at temperature near melting are
that of the mixtures of two hard spheres of different sizes
and charges. Presently the calculations of physical quanti-
ties of these binary alloys are in progress. If experimental
and calculated quantities come out within the limit of ex-
perimental errors, the assumptions will have more solid
base.

Authors gratefully acknowledge the generous help from Mr.
A.Z. Ziauddin Ahmed in software handling throughout the
progress of this work.
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